Quantitative Analysis of the Thyroid Hormone T4 Biomarker Extracted From Whole Blood Using a Mitra® Microsampling Device

Chad Christianson, Jason Watts, Katherine Yahvah, and Michael Williams
Alturas Analytics, Inc., 1324 Alturas Dr., Moscow, ID 83843, USA

OVERVIEW

Purpose:
Develop extraction and LC-MS/MS methods for the determination of Thyroxine (T4).

Methods:
Human blood containing T4 was collected and allowed to dry. The dried blood was extracted and analyzed by microflow LC-MS/MS (MFLC-MS/MS). Samples were quantified against standards extracted from an artificial matrix.

Results:
The method is linear from 0.500 to 500 ng/mL with an r-value of 0.9973. Measurement of multiple lots of human whole blood using this method revealed endogenous T4 levels of approximately 18.9 ng/ml.

INTRODUCTION

Thyroid hormones are critical regulators of metabolism, growth, and development. Thyroxine (T4) and 3,3',5-triiodothyronine (T3) are produced in the thyroid gland and released into circulation where the more biologically active form, T3 exerts effects on peripheral tissues. The serum level of T4 is a useful biomarker of overall thyroid function. Low or high levels of circulating thyroid hormones are indicative of thyroid or pituitary gland dysfunction resulting from disease or malnutrition. Hyperthyroidism or hypothyroidism can result from autoimmune disorders, such as Graves’ disease, certain medications, thyroid cancer, and can often occur during pregnancy. Individuals suffering from thyroid dysfunction suffer from a broad range of symptoms including weakness and fatigue. The Mitra® Microsampling Device (MMD) enables convenient and accurate at-home sample self-collection from a simple finger prick.

METHODS

Extraction:
- Sample volume: 10 µl absorbed on MMD
- Dry 2 hours
- Add 500 µl methanol containing T413C6
- Remove device, centrifuge and collect 400 µl of supernatant
- Evaporate to dryness under nitrogen gas
- Reconstitute with 80:20 methanol:water

LC-MS/MS:
- Waters ACQUITY UPLC® M-Class MFLC
- Binary gradient using acetonitrile and water with 0.1% formic acid
- Flow Rate: 50 µl/min
- Column: Phenomenex Kinetex® biphenyl column (50 x 1.0mm, 1.7 µm)
- Sciex QTRAP® 6500 or 6500+ operating in MRM mode
- Sciex OptiFlow™ Source
- Positive ion mode

CONCLUSION

- Method provides sensitive and accurate quantification of thyroid biomarkers.
- At-home sample collection requiring only 10 microliters of sample.
Known as the technology leader of MS/MS bioanalysis, Alturas Analytics delivers results on time with scientific integrity that exceeds industry standards. Privately owned and client focused, in our 18 years of operation Alturas Analytics has earned a reputation for personalized service and innovative MS/MS solutions.

BIOANALYTICAL SERVICES
- Methods Development, Transfer and Validation
- GLP and Non-GLP Sample Analysis
- Antibody Drug Conjugate (ADC) and Other Macromolecule Analysis
- Protein Binding Determination
- Dried Blood Spot (DBS) and Matrix Spot Analysis
- PK and TK Analysis and Reporting

RESEARCH
- 15% of Capacity Reserved for Research
- New bioanalytical techniques including:
 - Microflow LC-MS/MS
 - Immunocapture
 - Picofuze™
 - Creation of Novel Dye to Analyze Translucent Matrices Such As: Tears, Cerebrospinal Fluid, Synovial Fluid

QUALITY SYSTEMS
- Compliant to GLP and FDA, EMA and Crystal City Guidelines
- Onsite QA and IT Departments
- Thermo-Watson LIMS
- 21 CFR Part 11 Compliant
- GLP Validated Analyst Software
- Validated WinNonlin®
- Rush and Next Business Day Data Delivery Available

FACILITIES AND EQUIPMENT
- 15,000 Sq. foot purpose-built facility
- Sciex 4000, 5500 and 6500 mass spectrometers
- Shimadzu UPLCs
- Waters M-Class Microflow UPLCs
- Watson LIMS system
- HTDialysis Micro-Equilibrium Devices